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1 Introduction

The understanding of the fundamental nature and quantum properties of spacetime is

one of the most important questions in theoretical physics. An example of such problems

is the spacetime singularities that general relativity predicts. A well-known one is the

big-bang singularity of a time-dependent spacetime, where general relativity breaks down.

One needs a quantum theory of gravity to understand physics close to the singularity.

String theory is one of the most promising candidate for such a theory. Although we

know some static solutions in string theory, e.g. products of Minkowski space and compact

manifolds, these static spacetimes are not so much useful in clarifying the dynamics of string

theory in the strong curvature regime or near the singularities. Therefore it is necessary to

understand string theory on time-dependent backgrounds. Unfortunately time-dependent

backgrounds are difficult to work with in string theories in general, though some special

cases are analyzed [1]–[5].
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Recently a model of big-bang cosmology has been proposed in matrix string theory

based on AdS/CFT correspondence which is a powerful nonperturbative formulation of

string theory [6]. This corresponds to a simple time-dependent solution of supergravities

which are the low-energy effective theories of string theories that preserves 1/2 super-

symmetry in ten dimensions, with the light-like linear dilaton background, and various

extensions have been considered [7]–[30]. As is usual in AdS/CFT correspondence, super-

symmetry is expected to play an important role. The existence of supersymmetry allows

us to better control the behaviors of the solutions in string/supergravity backgrounds and

the quantum and nonperturbative properties of the field theories. Therefore there has been

much interest in time-dependent supersymmetric solutions of string/supergravity theories.

For a detailed review of the big-bang models in string theory, see [31].

On the other hand, D-branes can probe the nonperturbative dynamics of the string

theory and they have been used to study various duality aspects of string theory. It is

thus interesting to find if we can have such brane solutions in time-dependent backgrounds

with time-dependent dilaton. In fact, D3-brane solutions have been found and discussed

in [17, 19] and other single brane solutions in [24, 26]. A systematic derivation of the general

brane solutions in the pp-wave backgrounds has been given in [32]. It is also interesting

to study intersecting brane systems because it is known that some such configurations can

describe the standard model of particle physics. More recently, gauge theories on D-branes

are examined to gain into the dynamical supersymmetry breaking [33]. These solutions

are interesting since the metrics of these solutions depend on both space and time, but

the dependence is restricted to the product form of these functions. The question then

naturally arises if there are solutions with more general dependence on space and time and

if such solutions can give more physical insight.

In this paper, we investigate more general time-dependent supersymmetric solutions

in supergravity theories in ten and eleven dimensions in order to understand the nature of

spacetime. In section 2, we derive brane solutions in general supergravities with dilaton

and forms of arbitrary ranks in spacetime-dependent backgrounds. In section 3, we give

time-dependent solutions restricted to those with time-independent harmonic functions.

All known solutions belong to this class of solutions, but our solutions are more general.

We clarify the relation of our solutions and the known ones. In section 4, we give more gen-

eral solutions with time-dependent harmonic functions for one brane and two intersecting

branes. These are new solutions and the physical properties of these solutions including

spacetime and asymptotic structures are discussed in section 5. In section 6, we show

that these solutions have unbroken supersymmetry, and identify the amount of remaining

supersymmetries. Section 7 is devoted to conclusions and discussions.

2 Time-dependent brane system in supergravity

The low-energy effective action for the supergravity system coupled to dilaton and nA-

form field strength is given by

I =
1

16πGD

∫

dDx
√

− g

[

R−
1

2
(∂Φ)2 −

m
∑

A=1

1

2nA!
eaAΦF 2

nA

]

, (2.1)
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where GD is the Newton constant in D dimensions and g is the determinant of the metric.

The last term includes both RR and NS-NS field strengths, and aA = 1
2(5−nA) for RR field

strength and aA = −1 for NS-NS 3-form. In the eleven-dimensional supergravity, there is

a four-form and no dilaton. We put fermions and other background fields to be zero.

From the action (2.1), one can derive the field equations

Rµν =
1

2
∂µΦ∂νΦ +

∑

A

1

2nA!
eaAΦ

[

nA

(

F 2
nA

)

µν
−
nA − 1

D − 2
F 2

nA
gµν

]

, (2.2)

�Φ =
∑

A

aA

2nA!
eaAΦF 2

nA
, (2.3)

∂µ1

(

√

− geaAΦFµ1···µnA

)

= 0 , (2.4)

where F 2
nA

denotes Fµ1···µnA
Fµ1···µnA and (F 2

nA
)µν denotes Fµρ···σF

ρ···σ
ν .

The Bianchi identity for the form field is given by

∂[µFµ1···µnA
] = 0. (2.5)

In this paper we assume the following metric form:

ds2D = e2Ξ(u,r)
[

−2dudv +K(u, yα, r)du2
]

+

d−2
∑

α=1

e2Zα(u,r)(dyα)2 + e2B(u,r)
(

dr2 + r2dΩ2
d̃+1

)

, (2.6)

where D = d + d̃ + 2, the coordinates u, v and yα, (α = 1, . . . , d − 2) parameterize the

d-dimensional worldvolume where the branes belong, and the remaining d̃+ 2 coordinates

r and angles are transverse to the brane worldvolume, dΩ2
d̃+1

is the line element of the

(d̃ + 1)-dimensional sphere. Note that u and v are null coordinates. The metric com-

ponents Ξ, Zα, B and the dilaton Φ are assumed to be functions of u and r, whereas K

depends on u, yα and r. Our ansatz includes more general solutions than those in [17, 19],

which consider only single D3-brane solutions with the metrics of product form of time-

and space-dependent factors; ours allows intersecting branes as well as more general space-

time dependence.

For the field strength backgrounds, we take

FnA
= E′

A(u, r) du ∧ dv ∧ dyα1 ∧ · · · ∧ dyαqA−1 ∧ dr, (2.7)

where nA = qA + 2. Throughout this paper, the dot and prime denote derivatives with

respect to u and r, respectively. The ansatz (2.7) means that we have an electric back-

ground. We could, however, also include magnetic background in the same form as the

electric one with the replacement

gµν → gµν , Fn → eaΦ ∗Fn, Φ → −Φ. (2.8)

This is due to the S-duality symmetry of the original system (2.1). So we do not have to

consider it separately.
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With our ansatz, the Einstein equations (2.2) reduce to

Ξ′′ +

(

U ′ +
d̃+ 1

r

)

Ξ′

=
∑

A

D − qA − 3

2(D − 2)
SA(E′

A)2, (2.9)

d−2
∑

α=1

Z̈α + (d̃+ 2)B̈ +

d−2
∑

α=1

Ż2
α + (d̃+ 2)Ḃ2 − 2Ξ̇

[

d−2
∑

α=1

Żα + (d̃+ 2)Ḃ

]

+
1

2

d−2
∑

α=1

e2(Ξ−Zα)∂2
αK + e2(Ξ−B)

[

KΞ′′ +
1

2
K ′′ +

(

Ξ′K +
1

2
K ′

)(

U ′ +
d̃+ 1

r

)]

=
∑

A

D − qA − 3

2(D − 2)
e2(Ξ−B)KSA(E′

A)2 −
1

2
(Φ̇)2, (2.10)

Ξ̇′ +
d−2
∑

α=1

Ż ′
α + (d̃+ 1)Ḃ′ −

[

d−2
∑

α=1

Żα + (d̃+ 2)Ḃ

]

Ξ′ − Ḃ
d−2
∑

α=1

Z ′
α +

d−2
∑

α=1

ŻαZ
′
α

= −
1

2
Φ̇Φ′, (2.11)

Z ′′
α +

(

U ′ +
d̃+ 1

r

)

Z ′
α

=
∑

A

δ
(α)
A

2(D − 2)
SA(E′

A)2, (2.12)

U ′′ +B′′ −

(

2Ξ′ +
d−2
∑

α=1

Z ′
α −

d̃+ 1

r

)

B′ + 2(Ξ′)2 +
d−2
∑

α=1

(Z ′
α)2

= −
1

2
(Φ′)2 +

∑

A

D − qA − 3

2(D − 2)
SA(E′

A)2, (2.13)

B′′ +

(

U ′ +
d̃+ 1

r

)

B′ +
U ′

r

= −
∑

A

qA + 1

2(D − 2)
SA(E′

A)2, (2.14)

where U , SA and δ
(α)
A are defined by

U ≡ 2Ξ +

d−2
∑

α=1

Zα + d̃B , (2.15)

SA ≡ exp

[

ǫAaAΦ − 2

(

2Ξ +
∑

α∈qA

Zα

)]

, (2.16)

and

δ
(α)
A =

{

D − qA − 3

−(qA + 1)
for

{

yα belonging to qA-brane

otherwise
, (2.17)
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respectively, and ǫA = +1(−1) is for electric (magnetic) backgrounds. The sum of α

in eq. (2.16) runs over the qA-brane components in the (d − 2)-dimensional yα-space,

for example

∑

α∈qA

Zα =

qA−1
∑

αA=1

ZαA
. (2.18)

Eqs. (2.9), · · · , (2.13) and (2.14) are the uv, uu, ur, αβ, rr and ab components of the Einstein

equations (2.2), respectively. The dilaton equation (2.3) and the equations for the form

field (2.4) and (2.5) yield

e−Ur−(d̃+1)(eUrd̃+1Φ′)′ = −
1

2

∑

A

ǫAaASA(E′
A)2, (2.19)

(

rd̃+1eUSAE
′
A

)′

= 0, (2.20)
(

rd̃+1eUSAE
′
A

)

�

= 0. (2.21)

We assume that U is independent of r but depends only on u. In the case of static

spacetime, it is known that under this condition (U is constant in case of no dependence

on u), all the supersymmetric intersecting brane solutions have been derived [34]. If this

condition is relaxed, one may get more general non-BPS solutions [35], but here we are

interested in the BPS solutions. We extend them to the time-dependent case.

From eqs. (2.20) and (2.21), we learn that

rd̃+1eUSAE
′
A = cA, (2.22)

is a constant. Combined with eq. (2.19), we then get

Φ′ = −
1

2

∑

A

ǫAaA
cAẼA

rd̃+1
, (2.23)

where we have defined

ẼA = e−UEA. (2.24)

Similarly from eqs. (2.9), (2.12), (2.14), we find

Ξ′ =
∑

A

D − qA − 3

2(D − 2)

cAẼA

rd̃+1
,

Z ′
α =

∑

A

δ
(α)
A

2(D − 2)

cAẼA

rd̃+1
,

B′ = −
∑

A

qA + 1

2(D − 2)

cAẼA

rd̃+1
. (2.25)

Note that there is no integral constant in the right hand sides of (2.23) and (2.25). This is

related to the BPS condition.

– 5 –
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Substituting these into (2.13), we get

∑

A,B

[cA
2
MAB + rd̃+1

(

1

ẼA

)′

δAB

]cB
2

ẼAẼB

r2d̃+2
= 0, (2.26)

where

MAB =
2(D − qA − 3)(D − qB − 3)

(D − 2)2

+

d−2
∑

α=1

δ
(α)
A δ

(α)
B

(D − 2)2
+ d̃

(qA + 1)(qB + 1)

(D − 2)2
+

1

2
ǫAaAǫBaB. (2.27)

We require that all the branes be independent, and so EA are independent functions. We

thus learn from eq. (2.26) that

cA
2
MAB + rd̃+1

(

1

ẼA

)′

δAB = 0, (2.28)

the off-diagonal part of which is MAB = 0 for A 6= B. As shown in ref. [27, 34], this

condition leads to the intersection rules for two branes. If qA-brane and qB-brane intersect

over q̄ (≤ qA, qB) dimensions, this gives

q̄ =
(qA + 1)(qB + 1)

D − 2
− 1 −

1

2
ǫAaAǫBaB . (2.29)

The rule (2.29) tells us that D1-branes with a1 = 1 can intersect with D3-brane with a3 = 0

on a point (q̄ = 0) and with D5-brane with ǫ5a5 = −1 over a string (q̄ = 1), and D5-brane

can intersect with D5-brane over 3-brane (q̄ = 3), in agreement with refs. [36–38].

The second term in (2.28) must be constant. This, in particular, means

HA =

√

2(D − 2)

∆A

1

ẼA

, (2.30)

is a harmonic function

(rd̃+1H ′
A)′ = 0, (rd̃+1H ′

A)
�

= 0, (2.31)

where we have defined

∆A = (D − qA − 3)(qA + 1) +
D − 2

2
a2

A. (2.32)

Note, however, that the condition (2.31) allows u-dependent term

HA = hA(u) +
QA

rd̃
, (2.33)

where hA is an arbitrary function of u and QA is a constant. This class of solutions

generalize those discussed in [27]. They are also similar to those discussed in [28] though

time-dependence is taken differently.

– 6 –
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Using (2.30) in (2.25), we find

Ξ = −
∑

A

D − qA − 3

∆A
lnHA + ξ(u),

Zα = −
∑

A

δ
(α)
A

∆A
lnHA + ζα(u),

B =
∑

A

qA + 1

∆A
lnHA + β(u),

Φ =
∑

A

ǫAaA
D − 2

∆A
lnHA + φ(u), (2.34)

where ξ, ζα, β, φ are functions of u only. It follows from the definition and the solu-

tions (2.34) that U reduces to

U = 2ξ(u) +

d−2
∑

α=1

ζα(u) + d̃β(u), (2.35)

consistent with our ansatz that U depends only on u.

The condition (2.20) and (2.21) or (2.22), combined with the definition (2.16) and the

solution, gives

ǫAaAφ+ 2
∑

α∈/qA

ζα + 2d̃β = 0, (2.36)

cA = d̃QA

√

2(D − 2)

∆A
. (2.37)

We then find that MAB = ∆A

D−2δAB . It turns out that using the intersection rules, the

condition (2.11) is reduced to

(ḢA)′ = 0. (2.38)

Namely we find that the harmonic function can be, at most, a sum of the functions of r

and u. This is consistent with our previous result (2.33) and gives no further constraint.

Note that separable forms for the metric of the type (2.34) was assumed from the

beginning in [17, 19, 27, 29], but here we have naturally derived this property. Also the

harmonic functions were taken to be independent of u, but they can be actually functions

of u as well.

We still have to take eq. (2.10) into our account. This equation is rewritten as

W (u, r) + V (u) +
1

2

d−2
∑

α=1

e2(Ξ−Zα)∂2
αK +

1

2
e2(Ξ−B)r−(d̃+1)

(

r(d̃+1)K ′
)′

= 0 , (2.39)

– 7 –
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where

W (u, r) ≡
∑

A,B

(D − 2)2

∆A∆B
(MAB + 2)(lnHA)·(lnHB)· + 2

∑

A

D − 2

∆A
(lnHA)··

+ 4(D − 2)(β̇ − ξ̇)
∑

A

(lnHA)·

∆A
, (2.40)

V (u) ≡

d−2
∑

α=1

(

ζ̈α + ζ̇2
α

)

+ (d̃+ 2)
(

β̈ + β̇2
)

− 2ξ̇

[

d−2
∑

α=1

ζ̇α + (d̃+ 2)β̇

]

+
1

2
(φ̇)2 . (2.41)

Eq. (2.39) can be regarded formally as the equation for K, which is an elliptic type

differential equation with respect to r and yα. However the source terms depend not only

on r but also on u. Hence we have to solve the elliptic type differential equation at any

time u. It may be very difficult to find the analytic solutions. Instead we may first assume

K explicitly, and then solve eq. (2.39). In this case, eq. (2.39) must be regarded as a

constraint equation for the formally solved variables Ξ, Zα, B and Φ. In this paper, we

shall adopt the latter approach.

Here we assume

K = e−2ξ(u)k(u, yα) +
m(u, yα)

rd̃
, (2.42)

with

k(u, yα) = k0(u) +

d−2
∑

α=1

kα(u)yα +

d−2
∑

α,β=1(α6=β)

kαβ(u)yαyβ

+
∑

α∈∀qA

e2ζα(u)hαα(u)(yα)2, (2.43)

m(u, yα) = m0(u) +

d−2
∑

α=1

mα(u)yα , (2.44)

where k0(u), kα(u), kαβ(u), hαα(u),m0(u) and mα(u) are arbitrary functions of u. Here the

sum α ∈∀qA is taken only over yα coordinates belonging to all the branes.

Given K(u, r, yα), we find that u-dependent terms (ξ, ζα, β and φ) are constrained by

two conditions (2.36) and (2.39). The solution is then given by

ds2D =
∏

A

H
2

qA+1

∆A

A

[

e2ξ(u)
∏

A

H
−2D−2

∆A

A

(

−2dudv +K(u, r, yα)du2
)

+
d−2
∑

α=1

∏

A

H
−2

γ
(α)
A
∆A

A e2ζα(u)(dyα)2 + e2β(u)
(

dr2 + r2dΩ2
d̃+1

)

]

,

ẼA =

√

2(D − 2)

∆A
H−1

A , Φ =
∑

A

ǫAaA
D − 2

∆A
lnHA + φ(u), (2.45)

– 8 –
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with two constraints (2.36) and (2.39), where HA and K are given by eqs. (2.33) and (2.42),

respectively, and

γ
(α)
A =

{

D − 2

0
for

{

yα belonging to qA-brane

otherwise
. (2.46)

Note that we still have one gauge freedom for the time coordinate u, by which we can

choose any function for ξ(u).

To give solutions explicitly, eqs. (2.36) and (2.39) must still be solved. Let us now

discuss explicit solutions.

3 Solutions with time-independent harmonic functions

To see the relation of our results with earlier work, let us first discuss solutions with u-

independent harmonic functions, i.e.,

HA = h
(0)
A +

QA

rd̃
, (3.1)

where h
(0)
A and QA are constants. In this case, since ḢA = 0, we have W = 0.

We now discuss two examples.

3.1 Branes with factorized metrics in time and space

If hαα(u) = 0(α ∈∀ qA), the conditions on u-dependent terms (ξ, ζα, β and φ) should satisfy

are eq. (2.36) and eq. (2.39) with W = 0, i.e.

d−2
∑

α=1

(

ζ̈α + ζ̇2
α

)

+ (d̃+ 2)
(

β̈ + β̇2
)

− 2ξ̇

[

d−2
∑

α=1

ζ̇α + (d̃+ 2)β̇

]

+
1

2
(φ̇)2 = 0 . (3.2)

The solutions discussed in [19, 29] belong to this class. They consider a single D3-brane

with d = 4, d̃ = 4 and take

H3 =
R4

r4
, e2ξ = e2ζ1 = e2ζ2 ≡ ef(u), K = β = 0, aA = 0, Φ = φ(u) , (3.3)

where R is a constant. The metrics here are of the factorized form in u- and r-dependent

terms. Eq. (2.36) is trivially satisfied, and eq. (3.2) gives

f̈ −
1

2
ḟ2 +

1

2
φ̇2 = 0, (3.4)

in agreement with their result. Here we have more general intersecting solutions with the

function K.
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3.2 Branes in pp-wave backgrounds

Here, we give an example with the pp-wave,

K = e−2ξ(u)k(u, yα) , (3.5)

with (2.43). This is just the case with m = 0 in eq. (2.42). The condition (2.39) reduces to

V +
∑

α∈∀qA

hαα = 0, (3.6)

where V is defined by eq. (2.41). If this condition and eq. (2.36) are satisfied, the solution

is eq. (2.45) with (3.5).

For a check, let us compare with the D3-brane solution in [17], in which they have

d = 4, d̃ = 4 and

H =
R4

r4
, e2ξ ≡ k2

CH(u) , e2ξK = k(u, yα) ≡ hCH(u, r, yα),

ζ1 = ζ2 = β = 0, aA = 0, Φ = φ(u) ≡ φCH(u), (3.7)

where kCH, hCH, φCH are the variables adopted in [17]. Again eq. (2.36) is trivial and

eq. (3.6) reduces to

1

2
φ̇2 = −h11 − h22, (3.8)

in agreement with eq. (12) in [17].

As a more interesting case, let us consider D1-D5-brane solution:

ds2 = H
− 3

4
1 H

− 1
4

5 e2ξ(u)
[

−2dudv +K(u, yα)du2
]

+

(

H1

H5

)
1
4

4
∑

α=1

eζα(u)dy2
α

+ H
1
4
1 H

3
4
5 e

2β(u)
(

dr2 + r2dΩ2
3

)

,

Φ = ln

(

H1

H5

)
1
2

+ φ(u). (3.9)

In this case, K depends on yα linearly because only one spatial dimension in u-v coordinates

can intersect, and so we take

K = e−2ξ(u)

(

k0(u) +

d−2
∑

α=1

kα(u)yα

)

. (3.10)

The conditions (2.36) and (3.6) tell us that

φ = 4β = −

4
∑

α=1

ζα,

4
∑

α=1

ζ̇2
α + 12β̇2 = 0. (3.11)

The last relation implies that ζα and β are constant, giving no nontrivial solutions for

these. The discussions in [27] overlooked eqs. (2.11) and (2.21), and so these restrictions

on the solution were not obtained.
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4 Solutions with time-dependent harmonic functions

In this section, we present more nontrivial solutions with both r- and u-dependent harmonic

functionsHA in (2.33). These are the new solutions which have not been known. The metric

is also given by (2.45) with (2.33) in the general case. For simplicity of presentation, let

us restrict ourselves to the simple case of K = 0. The nontrivial constraint we still have is

the uu-component of the Einstein equation (2.39), which reduces to

W (u, r) + V (u) = 0. (4.1)

As we discussed, we regard this equation as a constraint on the time-dependent part of

the harmonic and metric functions. Note that we can easily extend the solution to non-

vanishing K, if K is given by (2.42). In the case with the quadratic terms of yα, the

condition (4.1) should be replaced by

W (u, r) + V (u) +
∑

α∈∀qA

hαα = 0. (4.2)

In what follows, we solve eq. (4.1) and give nontrivial solutions.

4.1 Single brane

We first consider a single A-brane. For all branes in M-theory and superstrings, we have

the relation

2(D − 2)

∆A
= 1, (4.3)

so it is sufficient to concentrate on those solutions in which this relation is valid. In this

case, (4.1) gives

ḦA

HA
+ 2(β̇ − ξ̇)

ḢA

HA
+ V = 0. (4.4)

Substituting (2.33) and sorting out the terms in the orders of r, we find

d−2
∑

α=1

(

ζ̈α + ζ̇2
α

)

+ (d̃+ 2)
(

β̈ + β̇2
)

− 2ξ̇

[

d−2
∑

α=1

ζ̇α + (d̃+ 2)β̇

]

+
1

2
(φ̇)2 = 0, (4.5)

ḧA + 2(β̇ − ξ̇)ḣA = 0. (4.6)

We can integrate (4.6) to obtain

2(β − ξ) = − ln ḣA − 2c1, (4.7)

where hA is an arbitrary function of u, c1 is an integration constant and we have additional

conditions (2.36) as well as (4.5).

In the present solutions, we have (d + 2) arbitrary functions; the metric functions

ξ(u), ζα(u), β(u), the dilaton field φ(u), and the gauge field hA(u). We still have one

constraint (2.36) and two equations (4.5) and (4.7) for those variables. Taking into account
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one gauge degree of freedom of u coordinate, there are (d − 2) degrees of freedom in the

present single brane system.

As an example, let us consider D3-brane. In this case, we have six unknown functions

of u; ξ, ζ1, ζ2, β, φ, and h3, which must satisfy

β = 0, ξ =
1

2
ln ḣ3 + c1,

2
∑

α=1

(

ζ̈α + ζ̇2
α

)

−
ḧ3

ḣ3

2
∑

α=1

ζ̇α +
1

2
φ̇2 = 0. (4.8)

Using the gauge freedom, we may set ξ = 0. As a result, two functions (e.g. ζ1 and ζ2)

remain arbitrary. This gauge choice reduces to ḣ3=constant, that is h3 = au + b. If we

assume ζ1 = ζ2 ≡ f(u)/2 and adopt the gauge condition such that ξ = f(u)/2, we find the

similar solution in [19, 29], although h3 depends on u.

4.2 Intersecting two branes

Let us consider two intersecting branes A and B. In this case, (4.1) gives

ḢAḢB

HAHB
+
ḦA

HA
+
ḦB

HB
+ 2

(

β̇ − ξ̇
)

(

ḢA

HA
+
ḢB

HB

)

+ V = 0. (4.9)

Substituting (2.33) and sorting out the terms in the orders of r, we find

V = 0, (4.10)

QBḧA +QAḧB + 2
(

β̇ − ξ̇
)(

QBḣA +QAḣB

)

= 0, (4.11)

ḣAḣB + ḧAhB + hAḧB + 2
(

β̇ − ξ̇
)(

ḣAhB + hAḣB

)

= 0. (4.12)

To solve the last two equations, we introduce new variables f±(u) as

hA(u) =
QA

2
[f+(u) + f−(u)],

hB(u) =
QB

2
[f+(u) − f−(u)]. (4.13)

Eqs. (4.11)and (4.12) are written as

f̈+ + 2
(

β̇ − ξ̇
)

ḟ+ = 0, (4.14)

(ḟ+)2 = 2f−[f̈− + 2(β̇ − ξ̇)ḟ−] + (ḟ−)2. (4.15)

Integrating these equations, we find

e2(β−ξ)ḟ+ = c+ , (4.16)
√

f−(f− − c−) + c− ln
[

√

f− +
√

f− − c−

]

= f+ + c0 , (4.17)

where c0, c± are integration constants.

Once we know β(u), fixing the gauge (i.e., giving ξ(u)), we can solve eq. (4.16) to

obtain f+(u). Then f−(u) is obtained by solving eq. (4.17). For example, if we choose the

gauge as ξ = β, we find

f+(u) = c+u+ d+ , (4.18)
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where d+ is an integration constant. Then f−(u) is implicitly given by the

following equation;
√

f−(f− − c−) + c− ln
[

√

f− +
√

f− − c−

]

= c+u+ d+ , (4.19)

where we have chosen c0 = 0 without loss of generality.

Compared with the single brane system, our intersecting brane system has one addi-

tional function hB(u). On the other hand, there is one additional constraint from (2.36)

of the additional brane as well as eq. (4.10). As a result, naively we expect that (d − 3)

degree of freedom will be left in the present system. However, there are some exceptional

cases. If the number of intersecting dimensions is one, e.g. for D1-D5, D2-D4, and D3-D3

intersecting brane systems, the conditions (2.36) and (4.10) yield that all arbitrary func-

tions vanish, i.e., ζα = β = φ = 0. We can set ξ = 0 by use of the gauge freedom. As a

result no degree of freedom is left in those systems.

We show one concrete example, i.e., the D1-D5-brane system. The solution is given by

ds2 = −2H
− 3

4
1 H

− 1
4

5 dudv +

(

H1

H5

)
1
4

4
∑

α=1

dy2
α +H

1
4
1 H

3
4
5

(

dr2 + r2dΩ2
3

)

,

Φ = ln

(

H1

H5

)
1
2

. (4.20)

where HA is given by eq. (2.33) with A = 1 or 5 and d̃ = 2. We have chosen ξ = 0 by using

gauge degree of freedom. Then h1(u) and h5(u) are given by eq. (4.13), i.e,

h1(u) =
Q1

2
[f+(u) + f−(u)],

h5(u) =
Q5

2
[f+(u) − f−(u)] , (4.21)

where f+(u) is given by eq. (4.18) and f−(u) is determined by inverting eq. (4.19) as a

function of u. Hence the solution is completely fixed up to some integration constants.

Next let us consider D2-D6-brane solution:

ds2 = H
− 5

8
2 H

− 1
8

6

(

−2e2ξ(u)dudv + e2ζ1(u)(dy1)2
)

+H
3
8
2 H

− 1
8

6

5
∑

α=2

e2ζα(u)dy2
α

+H
3
8
2 H

7
8
6 e

2β(u)
(

dr2 + r2dΩ2
2

)

,

Φ =
1

4
lnH2 −

3

4
lnH6 + φ(u) . (4.22)

In this case, there are ten non-trivial u-dependent functions ξ, ζα(α = 1 ∼ 5), β, φ and f±
which must satisfy (2.36), (3.2), (4.16) and (4.17):

5
∑

α=2

ζα = −φ = −
4

3
β, (4.23)

(

ζ1+
5

3
β

)¨

− 2ξ̇

(

ζ1+
5

3
β

)˙

+ ζ̇2
1 +

17

3
β̇2−

5
∑

α,β=2

ζ̇αζ̇β(1 − δαβ) = 0, (4.24)

β − ξ = −
1

2

(

ln ḟ+−ln c+

)

, (4.25)

√

f−(f− − c−) + c− ln
[

√

f− +
√

f− − c−

]

= f+ + c0 , (4.26)
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where c0, c± are arbitrary constants. We can set ξ = 0 by use of the gauge freedom.

As a result, we find four arbitrary functions. For example, one can take ζ2, ζ3, ζ4 and

f− to be arbitrary functions, and determine ζ1, ζ5, β, φ and f+ by using the five equa-

tions (4.23), (4.24), (4.25) and (4.26).

We can easily extend these solutions to the cases with the K-wave if K is given in the

form of (2.42).

5 Some properties of the solutions

We discuss some properties of our solutions. There are three important geometrical prop-

erties of spacetime: a singularity, a horizon, and an asymptotic structure.

5.1 Singularity

To study the spacetime singularity, we have to analyze the curvature tensors. If matter

fields are singular at some spacetime region, the Ricci curvature will diverge. For the form

and dilaton fields, we have

F 2
nA

= −nA! e−ǫAaAΦ−2B

(

H ′
A

HA

)2

= −nA! e−ǫAaAφ−2β
∏

B

H
−ǫAaAǫBaB

D−2
∆B

B

∏

C

H
−2

(qC+1)

∆C

C

(

H ′
A

HA

)2

, (5.1)

eΦ = eφ(u)
∏

A

H
ǫAaA

D−2
∆A

A . (5.2)

The Ricci scalar is given by

R =
1

2
(∂Φ)2 +

1

2

∑

A

2nA −D

D − 2
e−2B

(

H ′
A

HA

)2

. (5.3)

Since the harmonic function HA diverges at r = 0 if the charge QA does not vanish, we

naively expect that matter fields will diverge at r = 0 as well. However there are some

exceptional cases in which matter fields are regular even at r = 0. We can explicitly show it.

For a single brane system, we find that the second term of the Ricci scalar behaves as

the second term of R ∝ r
2(qA+1)(7−qA)

∆A
−2
, (5.4)

as r → 0. It diverges except for qA = 3 (D3-brane). In the case of the D3-brane, the dilaton

coupling vanishes (aA = 0). The dilaton Φ(= φ(u)) depends only on u from eq. (5.2), and

then the first term of the Ricci scalar does not diverge either.

We can also calculate the Kretschmann invariant. We find

RµνρσR
µνρσ ∝ r−

(qA−3)2

4 , (5.5)

as r → 0. Hence we again find that D3-brane system is regular even at r = 0, where branes

exist. However other single-brane system has a singularity at r = 0.
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For the D3-brane system, the Kretschmann invariant is given by

RµνρσR
µνρσ =

80Q2
3

(

Q2
3 + 12r8h2

3

)

(Q3 + r4h3)
5 , (5.6)

where h3 = a3u + b3 with a3 and b3 being constants. In that case, r = 0 is not singular

and the curvatures are time independent.

However there appears a singularity at

r4 = r4s(u) ≡ −
Q3

a3u+ b3
. (5.7)

The position of this singularity is time-dependent unless a3 = 0. If Q3(a3u + b3) < 0,

i.e. u < −b3/a3 (for a3Q3 > 0) or u > −b3/a3 (for a3Q3 < 0) the singularity appears at

rs > 0. The Ricci scalar also diverges at the same spacetime position. Hence even if r = 0

is regular, there appears a singularity in the region of r > 0 either in the future or on

the past. Even if r4s(u) < 0, because r = 0 is not singular, we may be able to extend the

spacetime beyond r = 0. Then the singularity appears at r̃4 ≡ r4 + Q3/(a3u+ b3) = 0.

The regular brane at r = 0 is static, but the singularity is moving.

Note that if a3 = 0, setting b3 = 1 and introducing new radial coordinate r̃ by r̃4 =

r4 +Q3, we find the metric as

ds210 =

(

1 −
Q3

r̃4

)1/2
[

−2dudv +K(u)du2 + e2ζ1(u)(dy1)2 + e2ζ2(u)(dy2)2
]

+

(

1 −
Q3

r̃4

)−2

dr̃2 + r̃2dΩ2
5 . (5.8)

This is almost the same as the static D3-brane solution, although there are three time-

dependent arbitrary functions, K, ζ1 and ζ2. In this case, not only the regular brane at

r̃ = 4
√

Q3 is static1 but also the singularity at r̃ = 0 is time independent.

The analysis of an intersecting two-brane system is similar. The second term in the

Ricci scalar is proportional to

r
2[7+q̄−(qA+qB)]

h

qA+1

∆A
+

qB+1

∆B

i

−2
, (5.9)

in the limit of r = 0. It diverges except for the cases of qA + qB = 6 and q̄ = 1, that is,

D1-D5, D2-D4 and D3-D3 intersecting-brane systems. In these cases, the dilaton couplings

satisfy aA + aB = 0, hence the dilaton (2.45) is constant near r = 0. Therefore the

Ricci scalar does not diverge. Calculating the Kretschmann invariant in the intersecting

two-brane system, we find that r = 0 is not singular in the D1-D5, D2-D4 and D3-D3

intersecting brane cases, but it is singular for other intersecting two-brane systems. For

1Here we assume that Q3 > 0. If Q3 < 0, then the singularity appears at r = 4
√

−Q3(> 0).
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Figure 1. The position (r2
s
) of the singularity with respect to time u for D1-D5-brane system. We

set c+ = 1, d+ = 0, c
−

= 1 (left) and c+ = 1, d+ = 1, c
−

= 1 (right).

D1-D5, D2-D4 and D3-D3-brane systems, we find

RµνρσR
µνρσ =

24Q4
1Q

4
5 + O(r2)

(Q1 + r2h1)9/2(Q5 + r2h5)11/2
, (5.10)

RµνρσR
µνρσ =

24Q4
2Q

4
4 + O(r2)

(Q2 + r2h2)19/4(Q4 + r2h4)21/4
, (5.11)

RµνρσR
µνρσ =

24Q4
3Q

4
3̃
+ O(r2)

(Q3 + r2h3)5(Q3̃ + r2h3̃)
5
, (5.12)

respectively. Hence the spacetime structure at r = 0 is regular, and the spacetime near the

branes is static.

The singularities appear at r2 = r2s+(u) and r2 = r2s−(u), where r2s± satisfy

r2s±(u) ≡ −
2

f+(u) ± f−(u)
= −

2

c+u+ d+ ± f−(u)
. (5.13)

with f−(u) given by eq. (4.19).

The position of the singularity as u changes is depicted in figure 1. If c+ = 1, d+ =

0, c− = 1, r2s+ evolves into the r2 > 0 region, which means that the singularity appears

beyond the regular position. It can be a naked singularity. On the other hand, if c+ =

1, d+ = 1, c− = 1, r2s+ does never go beyond the brane position (r2 = 0). r2s− is also behind

r = 0 for u > u0(≈ 0.5). Hence the singularity is covered by the regular branes.

5.2 Spacetime structure near branes and horizons

As we showed, the systems of single D3-brane, D1-D5, D2-D4 and D3-D3 intersecting two

branes are regular at the position of branes (r = 4). The spacetime structure there is

also static.

Assuming K = 0 and choosing ξ = 0, if we take the limit of r = 0 in D3-brane, we find

ds210 = Q
1/2
3

[

1

z2

(

−2dudv + dz2
)

+ dΩ2
5

]

+

2
∑

α=1

e2ζα(u)(dyα)2 , (5.14)

where z2 = Q3/r
2, and ξ is eliminated by the choice of gauge. We find AdS3 × S5 × Ẽ2,

where Ẽ2 is a 2-dimensional time-dependent flat Euclidean space.
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In the case of D1-D5, D2-D4, D3-D3 intersecting branes, we find

ds210 = Q
1/4
1 Q

3/4
5

[

1

z2

(

−2dudv + dz2
)

+ dΩ2
3

]

+

(

Q1

Q5

)1/4 4
∑

α=1

(dyα)2,

ds210 = Q
3/8
2 Q

5/8
4

[

1

z2

(

−2dudv + dz2
)

+ dΩ2
3

]

+

(

Q4

Q2

)5/8

(dy1)2 +

(

Q2

Q4

)3/8 4
∑

α=2

(dyα)2,

ds210 = Q
1/2
3 Q

1/2

3̃

[

1

z2

(

−2dudv + dz2
)

+ dΩ2
3

]

+

(

Q3̃

Q3

)1/2 2
∑

α=1

(dyα)2 +

(

Q3

Q3̃

)1/2 4
∑

α=3

(dyα)2, (5.15)

where z2 = QAQB/r
2. These spacetimes are AdS3 × S3 × E4, where E4 is 4-dimensional

flat Euclidean space. This is a static spacetime.

As for the horizon, the event horizon can be easily defined if the spacetime is static.

However because our spacetime is time dependent, it is not trivial. Rather we may have

to look for the apparent horizon. If K = 0, our spacetime depends only on two variables u

and r, then one may think that it is easy to find the apparent horizon just as the analysis of

the apparent horizon in a spherically symmetric gravitational collapse. However, because

u is a null coordinate which is not defined by r but by another spatial coordinate in the

brane worldvolume, we have to analyze effectively a three-dimensional problem to find the

apparent horizon. One may need numerical analysis, which is beyond the scope of the

present study.

In the cases of a single D3-brane, or D1-D5, D2-D4, and D3-D3 intersecting two-brane

systems, r = 0 is not singular but regular and static. Then r = 0 could be an event horizon

in 10 dimensional spacetime. However, we cannot compactify one common brane direction

(yd−1 = (v − u)/
√

2), and then we cannot obtain the lower-dimensional black holes

5.3 Asymptotic structure

As for the asymptotic spacetime structure, it is well known if the spacetime is static. In

(d̃+ 3)-dimensional spacetime, we find the asymptotically flat Minkowski geometry, while

in the brane directions ((d−1)-dimensional space), we have a uniform and static geometry.

So compactifying all brane directions, we find an asymptotically flat spacetime.

In the present time-dependent spacetime, we also find a uniform geometry in the

brane directions but it is time-dependent. In (d̃+3)-dimensional spacetime, in the limit of

r → +∞, we find

ds2D = −2dudv +

d−2
∑

α=1

fα(u)(dyα)2 + g(u)dr2
d̃+2

, (5.16)
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where we have used the gauge condition to set guv = −1, i.e.,

e2ξ =
∏

A

h
2(D−qA−3)

∆A

A , (5.17)

and fα(u) and g(u) are given by

fα(u) ≡
∏

A

h
−

2δ
(α)
A

∆A

A e2ζα and g(u) ≡
∏

A

h
2(qA+1)

∆A

A e2β , (5.18)

respectively. If we compactify yα, we may find a time-dependent cosmological solution.

However, one spatial brane direction (yd−1) cannot be compactified, and then such a

spacetime is no longer a homogeneous FRW universe. Rather it is just a plane sym-

metric (d̃+ 3)-dimensional inhomogeneous spacetime, unless we restrict ourselves to some

position in the yd−1 direction just as a brane-world scenario.

6 Supersymmetry

In this section, we explore the supersymmetry of our solutions. The supersymmetry trans-

formations in type II supergravities in the Einstein frame are

δψµ =

[

∂µ +
1

4
ωâb̂

µ Γâb̂ +
1

8

∑

A

e
1
2
ǫAaAΦ

(

1 +
1

2
ǫAaA

)

F/eâµΓâ

]

ǫ , (6.1)

δλ =

[

∂/Φ +
∑

A

(−1)nA

2
aAe

1
2
ǫAaAΦF/

]

ǫ , (6.2)

for the dilatino λ and the gravitino ψµ. The supersymmetry parameter ǫ is a Majorana

(complex Weyl) spinor in type IIA (IIB) theory. Γ11 is given by

Γ11 ≡
1

2

(

ΓûΓv̂ − Γv̂Γû
)

Γŷ1
· · ·Γŷd−2

Γr̂Γθ̂1 · · ·Γθ̂
d̃+1 , (6.3)

and Γâb̂ ≡ Γ[âΓb̂] are antisymmetrized gamma matrices. The spin connection ωµâb̂ is

defined by

ωµâb̂ ≡
1

2
eνâ(∂µeb̂ν − ∂νeb̂µ) −

1

2
eν
b̂
(∂µeâν − ∂νeâµ) −

1

2
eρâe

σ
b̂
eĉµ(∂ρeĉσ − ∂σeĉρ), (6.4)

where eâµ is a vielbein satisfying eâµeâν = gµν and eâµe
b̂µ = ηâb̂. Note that our Minkowski

metric is given by ηûv̂ = ηv̂û = −1, ηûû = ηv̂v̂ = 0 and ηâb̂ = δâb̂ for other indices, because

we use double null coordinates. F/ denotes the R-R field contracted with gamma matrices;

e.g. F/3 = 1
3!FµνρΓ

µνρ. Similarly ∂/Φ = Γµ∂µΦ.

We take ǫ to be dependent on the coordinates u and r and write ǫ = s(u, r)ǫ0, where

ǫ0 is a constant spinor. The Killing spinor equations are obtained by setting the above
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transformations (6.1) and (6.2) to zero. We find

δψu =

[

ṡ

s
−

1

2
ξ̇ (1 + ΓûΓv̂) −

1

2
eΞ−B Ξ′ Γr̂Γû

+
1

4
eΞ−B(K ′ +KΞ′)Γr̂Γv̂ +

1

4

d−2
∑

α=1

eΞ−Zα∂αKΓα̂Γv̂

+
1

8
eΞ
∑

A

e
1
2
ǫAaAΦ

(

1 +
1

2
ǫAaA

)

F/

(

Γû −
1

2
KΓv̂

)

]

ǫ0 = 0, (6.5)

δψv =

[

−
1

2
eΞ−B Ξ′ Γr̂Γv̂ +

1

8
eΞ
∑

A

e
1
2
ǫAaAΦ

(

1 +
1

2
ǫAaA

)

F/Γv̂

]

ǫ0 = 0, (6.6)

δψα =

[

1

2
eZα−Ξ Żα Γv̂Γα̂ −

1

2
eZα−B Z ′

α Γr̂Γα̂

+
1

8
eZα

∑

A

e
1
2
ǫAaAΦ

(

1 +
1

2
ǫAaA

)

F/Γα̂

]

ǫ0 = 0, (6.7)

δψr =

[

s′

s
+

1

2
eB−Ξ Ḃ Γv̂Γr̂ +

1

8
eB
∑

A

e
1
2
ǫAaAΦ

(

1 +
1

2
ǫAaA

)

F/Γr̂

]

ǫ0 = 0, (6.8)

δψθ =

[

1

2
eB−Ξ Ḃ r Γv̂Γθ̂ −

1

2
(1 + r B′) Γr̂Γθ̂

+
1

8
reB

∑

A

e
1
2
ǫAaAΦ

(

1 +
1

2
ǫAaA

)

F/Γθ̂

]

ǫ0 = 0, (6.9)

δλ =

[

∂/Φ +
∑

A

(−1)nA

2
aAe

1
2
ǫAaAΦF/

]

ǫ0 = 0. (6.10)

The transformations for other angular components are almost the same as the θ component

and do not give any extra conditions. Now we are going to examine the supersymmetry

transformation for several solutions.

6.1 D3-brane system

Let us first consider the time-dependent D3-brane solution in type IIB supergravity, for

which the dilaton coupling aA vanishes. Using the self-duality condition, we obtain

F/ =
1

2
[F/5 + ∗F/5] =

1

2

[

Fuvy1y2rΓ
uvy1y2r + F̃θ1θ2θ3θ4θ5Γ

θ1θ2θ3θ4θ5

]

= e−BH
′
3

H3

(

Γûv̂ŷ1ŷ2r̂ + Γθ̂1θ̂2θ̂3θ̂4θ̂5

)

, (6.11)

where we have used eqs. (2.36) and (2.45) to go to the second line. It is easy to see that

for the background (2.45), the dilatino variation gives the condition

Γv̂ǫ0 = 0. (6.12)
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The gravitino variation (6.5) takes the form

δψu =

[

ṡ

s
−

1

2
ξ̇ −

1

16
eΞ−BH

′
3

H3
Γûr̂

((

1 − Γûv̂ŷ1ŷ2

)

+
(

1 − Γθ̂1θ̂2θ̂3θ̂4θ̂5r̂

))

]

ǫ0 = 0. (6.13)

The other conditions from (6.6)–(6.10) are similar. One can check that all these conditions

are satisfied if ǫ is given by

ǫ = H
− 1

8
3 (u, r)e

1
2
ξ(u)ǫ0 , (6.14)

with

Γûv̂ŷ1ŷ2ǫ0 = ǫ0, and Γv̂ǫ0 = 0 . (6.15)

Assuming the above conditions are satisfied, we find the last term in eq. (6.13) automatically

vanishes. The condition in (6.14) is needed to kill the r- and u-dependent terms. The first

condition in (6.15) is the standard one for supersymmetry in the presence of a D3-brane and

leaves 16 supersymmetries unbroken. We see that the second condition in (6.15) breaks the

supersymmetry further by half leaving 8 supersymmetries in total. Namely, compared with

the static brane solutions with 16 supersymmetries, it is broken by further one half due to

the additional u-dependence of the system. All backgrounds of a single brane thus preserve

8 supersymmetries, though we will find that D1-brane is an exceptional case, preserving

16 supersymmetries.

6.2 Intersecting D1-D5-brane system

Next we consider intersecting D1-D5-brane system in type IIB supergravity.

F/ = F/3 + e−Φ ∗ F/7 = FuvrΓ
uvr + F̃θ1θ2θ3Γ

θ1θ2θ3

= e−B− 1
2
ΦH

′
1

H1
Γûv̂r̂ + e−B+ 1

2
ΦH

′
5

H5
Γθ̂1θ̂2θ̂3

. (6.16)

The supersymmetry transformation of dilatino is

δλ =

[

−Φ̇e−ΞΓv̂ + Φ′e−BΓr̂ −
1

2
e

1
2
ΦF/3 −

1

2
e−

3
2
Φ ∗ F/7

]

ǫ0

=

[

−Φ̇e−ΞΓv̂ +
1

2
e−BH

′
1

H1
Γr̂ (1 − Γûv̂) −

1

2
e−BH

′
5

H5
Γr̂

(

1 − Γθ̂1θ̂2θ̂3r̂

)

]

ǫ0 = 0. (6.17)

Using λ (Γ11λ = λ) and Γ11ǫ = −ǫ, we find

Γv̂ǫ0 = 0,
(

1 − Γûv̂ŷ1ŷ2ŷ3ŷ4

)

ǫ0 = 0. (6.18)

We now check the other condition from the gravitino:

δψu =

[

(

ṡ

s
−

1

2
Ξ̇

)

−
1

16
eΞ−BΓûr̂

(

3
H ′

1

H1
(1 − Γûv̂) +

H ′
5

H5

(

1 − Γθ̂1θ̂2θ̂3r̂

)

)

]

ǫ0 = 0, (6.19)

δψr =

[

s′

s
+

3

16

H ′
1

H1
Γûv̂ +

1

16

H ′
5

H5
Γθ̂1θ̂2θ̂3r̂

]

ǫ0 = 0. (6.20)
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The other conditions are again similar. All these conditions are satisfied if and only if

ǫ = H
− 3

16
1 (u, r)H

− 1
16

5 (u, r) e
1
2
ξ(u) ǫ0 , (6.21)

with

Γûv̂ŷ1ŷ2ŷ3ŷ4ǫ0 = ǫ0, Γv̂ǫ0 = 0. (6.22)

At first glance, it seems that we have two conditions (1 − Γûv̂) ǫ = 0 and Γv̂ǫ = 0 from

(6.17) and (6.19). However it turns out from the property of gamma matrices that these

two conditions are equivalent. Thus intersecting D1-D5-brane system also preserves eight

supersymmetries. This is a little surprising result because the number of the remaining

supersymmetry is the same as the single branes, but this is special for the solutions involving

D1-branes.

We also see from this analysis that we get twice the supersymmetries for D1-brane

compared with other single branes. The reason is that two conditions coming from the D1-

brane and from the time dependence degenerate to one (Γv̂ǫ0 = 0), but those conditions

are independent for the cases of other branes as we have seen in the previous subsection.

6.3 Intersecting D2-D6-brane system

In this final subsection, let us consider the intersecting D2-D6-branes in type IIA super-

gravity, although it is singular at the branes.

Now we have

F/ = F/4 + e−
3
2
Φ ∗ F/8 = Fuvy1rΓ

uvy1r + F̃θ1θ2Γ
θ1θ2

= e−B− 1
4
ΦH

′
2

H2
Γûv̂ŷ1r̂ + e−B+ 3

4
ΦH

′
6

H6
Γθ̂1θ̂2

. (6.23)

The supersymmetry transformation of the dilatino is

δλ =

[

−Φ̇e−ΞΓv̂ + Φ′e−BΓr̂ +
1

4
e

1
4
ΦF/4 +

3

4
e−

9
4
Φ ∗F/8

]

ǫ0

=

[

−Φ̇e−ΞΓv̂ +
1

4
e−BH

′
2

H2
Γr̂

(

1 − Γûv̂ŷ1

)

−
3

4
e−BH

′
6

H6
Γr̂

(

1 − Γθ̂1θ̂2r̂

)

]

ǫ0 = 0. (6.24)

So ǫ0 needs to satisfy the conditions

Γv̂ǫ0 = 0, (1 − Γûv̂ŷ1)ǫ0 = 0, (1 − Γûv̂ŷ1ŷ2ŷ3ŷ4ŷ5)ǫ0 = 0 . (6.25)

The last term in (6.24) automatically vanishes for given these conditions. The other non-

trivial conditions are

δψu =

[(

ṡ

s
−

1

2
Ξ̇

)

−
1

32
eΞ−BΓûr̂

(

5
H ′

2

H2

(

1 − Γûv̂ŷ1

)

+
H ′

6

H6

(

1 − Γθ̂1θ̂2r̂

)

)]

ǫ0 = 0, (6.26)

δψr =

[

s′

s
+

5

32

H ′
2

H2
Γûv̂ŷ1 +

1

32

H ′
6

H6
Γθ̂1θ̂2r̂

]

ǫ0 = 0. (6.27)
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The other components are similar. We find that all these conditions are satisfied if and

only if

ǫ = H
− 5

32
2 (u, r)H

− 1
32

6 (u, r)e
1
2
ξ(u)ǫ0 , (6.28)

with

Γûv̂ŷ1ǫ0 = ǫ0, Γûv̂ŷ1ŷ2ŷ3ŷ4ŷ5ǫ0 = ǫ0, Γv̂ǫ0 = 0 . (6.29)

The first condition in (6.29) comes from the D2-brane, the second one from the D6-brane,

the last one from the dilaton. The r- and u-dependence in (6.28) is needed to kill the r- and

u-dependent terms. Thus intersecting D2-D6-brane system preserves 4 supersymmetries.

7 Concluding remarks

In this paper we have constructed a fairly general family of time-dependent intersecting

brane solutions. An important property of these solutions is that they preserve partial

supersymmetry. This is important because this property assures that there will be the

corresponding dual field theories according to the gauge/gravity correspondence. The dual

theories can be used, for example, to study nonperturbative region of the gravity sector

such as the behaviors of the theory close to the singularity.

Our solutions include known D-brane solutions as well as M-branes in time-dependent

backgrounds, but the known ones were restricted to those with factorized form of the

metrics in time- and space-dependent functions. We have certainly given such solutions

but even these are more general. We have also given more general spacetime-dependent

solutions with time-dependent harmonic functions where the dependences on time and

space cannot be factorized, but they are sum of such terms. These are new class of

solutions, and we have studied their singularities, spacetime structure near branes and

asymptotic structures.

It is possible that we may get more general solutions if we relax the condition that U

depends only on u, but it is known that such a generalization gives only non-BPS solutions

already for static solutions [35]. So our solutions are expected to be most general BPS

solutions with spacetime-dependence.

We have also examined how many supersymmetries remain unbroken in our solutions.

The number of those are 8, 8 and 4 for a single brane other than D1, D1-D5-brane and D2-

D6-branes, respectively. The 8 remaining supersymmetries on the single brane corresponds

to N = 4 supersymmetry in 2 dimensions and N = 2 in 4 dimensions. To have remaining

supersymmetry, the time dependence can come in only through u. Due to this restriction,

however, we cannot compactify one worldvolume direction, preventing us from obtaining

lower-dimensional black holes, as discussed in section 5. It would be thus interesting to

study brane solutions with different time dependence, although we would loose unbroken

supersymmetry.

The near brane geometry is AdS3 × S5 × Ẽ2 in the single D3-brane system (Ẽ2: two-

dimensional time-dependent flat Euclidean space), or AdS3×S
3×E4 (E4: four-dimensional

flat Euclidean space) in the D1-D5, D2-D4, and D3-D3-brane systems. As argued in [39],

the corresponding dual field theory would be two-dimensional conformal field theory, now in
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time-dependent backgrounds. It would be interesting to examine the dual field theory [40]

and try to understand how the spacetime singularity is described in such a theory. We

hope that our construction of these general time-dependent solutions is useful for further

study of the singularities and other aspects of the gravitational systems through this kind

of dual theories.

Although our solutions include all kinds of brane solutions with RR, NS-NS and eleven-

dimensional four-form backgrounds, we have given explicit and detailed discussions of so-

lutions and their properties only for one or two RR fields (D-branes). It is interesting to

study our solutions in more detail for the cases including NS-NS field and more branes. It

is important because in a static system, we need more than two branes to obtain a black

hole solution after compactification to lower dimensions.

Finally though we have constructed the supersymmetric solutions, if we are inter-

ested in the direct application (rather than studying singularities and so on) of the so-

lutions to our world, it may be also interesting to consider solutions with dynamical

supersymmetry breaking.
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